
NASA TECHNICAL TRANSLATION NASA TT F-15,890

SUPERSONIC FLUTTER OF PLANE, RECTANGULAR, ANISOTROPIC
HETEROGENEOUS STRUCTURES

L. Librescu and Tr. Badoiu

(NASA-TT-F-15890) SUPERSONIC FLUTTER OF N74-33362
PLANE, RECTANGULAR, ANISOTROPIC
HETEROGENEOUS STRUCTURES (Kanner (Leo)
Associates) 23 p HC $4.25 CSCL 20K Unclas

G3/32 48573

Translation:, of "Asup-ra flutterului supersonic al structurilor
plane, dreptunghiulare, anizotpope, eterogene," Studii si

Cercetari de Mecanica Aplicata, Vol. 31, No. 2,
'pp. 235-250

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 AUGUST 1974



STANDARD TITLE PAGE

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TT F-15,890
4. Title and Subtitle 5. Report Date

SUPERSONIC FLUTTER OF PLANE, RECTAN- August 1974
GULAR, ANISOTROPIC, HETEROGENEOUS 6. Performing Organization Code
STETICTTITRES

7. Author(s) 8. Performing Organization Report No.

L. Librescu and Tr. Badoiu, Institute
of Fluid Mechanics and Aerospatial 10. Work Unit No.

Design, Bucharest, Romania
11. Contract or Grant No.

9. Performing Organization Name and Address NASw-2481
Leo Kanner Associates 13. Type of Report and Period Covered

Redwood City, California 94063
Translation

12. Sponsoring Agency Name and Address

National Aeronautics and Space Adminis- 14. Sponsoring Agency Code
Ltration, Washington, D.C. 20456
15. Supplementary Notes

Translation of "Asup-ra flutterului supersonic al struct~.
turilor plane, dreptunghiulare, anizotrope, eterogene,"
Studii si Cercetari de Mecanica Aplicata, Vol. 31,
No. 2, 1972, pp. 235-250

16. Abstract

Analytical study of the problem of linear flutter of plane
thin panels constructed symmetrically from an odd number
of anisotropic layers. The supersonic gas flow in which
the structure is placed is assumed to be coplanar and of
arbitrary direction. After deriving the flutter equations,
a criterion is presented for obtaining the critical J"
flutter characteristics, and conclusions are drawn con-
cerning the effect of various parameters taken into
consideration.

O

17. Key Words (Selected by Author(s)) 18. Distribution Statement

Unclassified-Unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price :

Unclassified Unclassified 21

NASA-HQ



SUPERSONIC FLUTTER OF PLANE, RECTANGULAR, ANISOTROPIC
HETEROGENEOUS STRUCTURES+

L. Librescu and Tr. Badoiu,
,Institut'e of Fluid Mechanics and. Aerospatial Desigh,

Bucharest, Romania

1. Introduction /235*

In a number of recent studies of the ;aeroelastic stability

of plane heterogeneous panels constructed symmetrically from

orthotropic layers, it was assumed that:

a) the principal axes of orthotropy of the material of each

layer chincides at every point with the panel's geometrical axes;

b) the panel is placed in ,a supersonic gas flow, and the

velocity vector of the unperturbed flow is parallel to the direc-

tion00 1.

In what follows, we shall analyze the problem of the flutter

of plane heterogeneous structures constructed symmetrically from

orthotropic layers, taking into consideration the effect of

arbitrary orientation of the orthotropicity, as well as the ef-

fect of arbitrary orientation of the gas flow (which is assumed

tohbe coplanar) on the panel siflutter characteristics.

2. 'Geometrical and Isotropic Considerations, Basic Equations

Let there be a plane rectangular plate (a x b), whose outer

surface is exposed to a supersonic, coplanar, gas flow of ar-

bitrary direction (Fig. 1 b).

* Numbers in the margin indicate pagination in the foreign text,
+ Origial article was accessioned by AIAA as A72-45440.



The panel is assumed to be con- /236

cij) structed symmetrically. from 21 + 1

C( = 1,2,...) elastic layers whose

0 material is assumed to be homogeneous

and orthotropic, and the principal

axes (r , )) of the material of
Fig. 1 a. 1 2

each layer are assumed to be rotated

with respect to the geometrical axes (5IJ52)

U nder the angle (J) (see Fig. 1 a).

But, as is well known (in this connection

$ . Isee, for example, [1]), in the case where the

components of the tensor of the moduli of

S4 elasticity are referred to the panel's geo-

Fig. 1 b. metricalyaxes, which are assumed not to,

coincide with the principal axes of ortho-

tropy, the material of each layer is characterized by six

elastic constants, which corresponds to anisotropy of the elastic

symmetry type with respect to the surface 53 = const.

The method of Galerkin ceases to be an efficient instrument

for tackling the various problems of the elastostatics and

dynamics of plane anisotropic panels (homogeneous or heterogeneous;

in this connection see Bert and Mayberry [2], Ashton [31 and

Waddoups [4]), as well as the problem of the supersonicfflutter of

plane anisotropic panels (see Calligeros and Dugundji [51 and

Ketter [6]).

On the other hand, the method of Rayleigh-Ritz, used in con-

nection with the principle of the minimum of potential energy,

1 The structure's geometrical and physical mechanical symmetry
with respect totithe panel's median plane also includes the values
of the orientation angles of the orthotropicity of the material
ofthe symmetric layers.
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turns out to be a suitable and efficient instrument foretackling

the above-mentioned problems. This is the method that we too

shall use in analyzing the stated problem.

In this manner, adopting the hypothesis of Love-Kitchoff for

the structure in the aggregate, the energy functional (see

Ambartsumian [71) is given by

where

=- [D 11 (w. 1)2 + 2D 12
w 

11w. 2 + D (wW. 2 2) +

+ 4De6 (w 1 )2 + 4(D,w. 11 + D 2 W. 22) W. 12 -

- T (w. )2 - -T22 (w. 2)2] dl1 d 2  (2.)

represents the total potential energy due to transversal bending /237
0 o

and the loads T11<:and T2 2 in the plane of the plate (these are

assumeditobbe positive in compression), and

W = pw ddE, d2 (2ht)

is the potential energy due to the transversal loads;

D== ~ ( - -) (i, k 1, 2, 6) (3)

represents the bending strength, which can be expressed in terms

of theoonstant Bik(:(~,jk = 1,2) referred to the principal axes

( ),2)) and the angles j) with the aid of equations (5) from

[1], adapted for'the .case of the theory 'of -smmtrically .orst~~ruted

structures.
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In the case of a supersonic, coplanar, gas flow of arbitrary

direction A, the aerodynamic pressure will be given by

AP c= -+-l sA + oo (4); A)] 7. (4I)

Then the total transversal load p( 1 ,E 2 ,t) that is operative in

the energy functional is expressed by

xp1 ) (Ow aw
SI E21, +t) +U.-cos A+ sin -

C', at a 41 0s2
(5)

Ow a2w- moe mo-H
at at2

In order to use the Rayleigh-Ritz method, we shall express the

transversal shift w(E~,E 2 ,t)!in the form

,w, n (6)

where the modal functions fmn(lE,2 ) must satisfy all the condi-

tions at the kinematic limit.

In the case of a simple panel resting on its edge (thbcase

to which we shall confine ourselves in the analysis that follows),

the modal functions

a b (7)

permit the conditions at the kinematic limit to be adequately

satisfied.

Taking into account equations (2)-(7) from [1], integrating /238

and,)1in(conformity with the principle of the minimum of
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potential energy, imposing the condition

=0 , (8)

we obtain the following system of equations for the coefficients

Cmn:

4m(2p + 1 - n) C -,, A
( 2 -)2p12m cos A + (9)D,, (2p + 1) (2p + 1 - 2n)

4n(2t +1 - 2n)
+ G . 21 +, I Sin A

' 1(21 +1) (2t +1 - 2n)

32 "mn(2p + - m) (2t + 1 - n)

SI 2>==( 2p+1) (2t±1) (2 p+1 - 2m) (2t+l - 2n) X

S(m
2 +(2p l--M.) )  

( +(12(2t1- n) 2) 3 C 2p+ 1-,; 2+1-n 0

where

R11 = ---- -- (10)

X2D -""2D

and

Z 2  o is the parameter connected with (11)
-Z + ET the eigenvalues,

A = xp.Ma/(D1 4) is the velocity parameter,

Oi= xr4D 1 (n(mo a ) is the reference frequency

ET= EC/o + 'xp/(monc is the total damping parameter.
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With reference to these qquations we can note the following:

a) in the case where P(J) = 0 and A = 0, the coupling of

the modes in the direction 0 1 is purely aerodynamic;

b) in the case where (J) 3 0 and A = 0, the coupling of

the modes can be of an aerodynamic and elastic nature (the

elastic coupling taking place in the modes from the direction 051

as well as in those from the direction 02).

In the event that A X 0, present in addition is the coupling /239

of modes from the direction 0O 2 that are operative in purely

aerodynamic terms.

Also worthy of mention is the fact that the system of equa-

tions (9),, particularized for different special cases, coincides

with:

A) that obtained by Bohon [8] and Kordes and Noll [9] for

the case of anhomogeneous and orthotropic panel (ithbeing assumed

that the elastic axes of orthotropy coincide with the geometrical

axes) and the case of a homogeneous and isotropic panel, it being

assumed in both cases that the panel is placed in a coplanar

gas flow of arbitrary direction;

B) that obtained by Calligeros and Dugundji [5] for the case

of ahhomogeneous panel and a gas flow oriented parallel to the

direction O1 (A = 0);

C) it agrees with the system of equations obtained by

Ketter [6].

Returning to the system of flutter equations, the condition

of nontriviality of the solution requires the determinant of the

coefficients of Cmn to be zero.

6



Restricting our analysis to the case of the first two modes

in the direction 051 as well as the direction 052 (m = 1"2;

n =01'.2), the characteristic determinant becomes

:i wo)1 Z 8 , 8Zp 2[ 640(116f- -- cos A " sin A - 10+
3 3 9 72 Di

- cosn - 3 - + - sin A
D11 3

_ n [ 640 (D 2 m13
c s nsn [ AB1 p cs --- cos A

[ 640 +D , 8 , i 8 ,

in tn ± 2912 pa2 +2D D
_____ __- m

2
n

2  1--49 l "R4n
2

22 7

D n" i (13)

represents the natural frequencies obtained for damping and elas- /240

tic coupling in the absence of a gas flow.

Expansion of the determinant leads to the following equation

in the velocity parameter X:
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8 ) (CoS2 2 si12 2 A 1 {Co2 [(2 Z (

3+(,,-z) ( -2-Z)1]+2 sin8 A [(_,-z) ( 2 -z) +

+(o 2-Z) + ( 2 -Z) + (1 -Z)) = 0.

3. Formulating the Problem of Aeroelastic Stability

As is known, studying the aeroe4astic stability of panels in

a linear formulation permits determination of the value of the

gas velocity called the flutter velocity, which is defined as
follows: for the interval 0 < X < X0 , the frequencies of

satisfy the inequality Re, < 0 for which the solution of equation

(6) is stable or neutrally stable while to the right of A0, thereexiat values of for which at least one solution of equation (6)

possesses an ~ that satisfies the inequality Re > 0. In the

latter case, the solution of equation (6) is unstable inasmuch as

the panel undergoes oscillations of the flutter type.

It can be shown (in this connection see Movtabilityan [10of panels in]
and Krumhaar [12]) that the determination of the conditions

leading to definition of the critical flutter characteristics

can be reduced to analysis of thehe problems eigenvalues Zn E Zn(X)

at the limit as a function of the velocity parameter X, the other

parameters remaining constant.

8



For an eigenvalue Zn(X,)2 of the problem at the limit, we

obtain from 6quation (il) two frequencies wnl() and wn 2 (X)
given by

/ -
O2,,(e ) Y (2.,n (1 5 )

One of these two roots, namely, nl, satisfies the inequality /241

Re(wnl) < 0 for an arbitrary A; this inequality ensues from the

fact that Wnl + Wn2 
= -EPQ0 . The second frequency, wn 2 , satis-

fies the conditions

N iwn2) < 0 or Re(en 2 ) = 0 or Re(wn 2 ) > 0 (16)

if andoonly if Zn(X))is located inside, at the boundary of or

outside the stability parabola.

If the conditions under consideration arethose that corres-

pond to appearance of the threshold of instability (Re(wn2 ) = 0)

and if we take into account that

Z = ReZ + iImZ, (17)

we get from equation (15)

ReZ = ~ (lm(,))2, ImZ = TIm() (17' )

Equations (17') in the complex plane Z delimits the points

of the parabola defined by

2 It should be stressed that for a value of N2 > 0, the sequence
of eigenvalues Z1 (A), Z2 (X), ,., is denumerabTe,

9



Z2 = CZR (Z ImZ; ZR ReZ), (18)

called the stability. parab ola 3 .

The inner domain of the stability parabola corresponds to the

eigenvaluesf for which the solutions of both n 1 and w2 have real

negative parts, and the outer domain corresponds to the eigenvalues

for which Re(wn 2 ) > 0. Thus, the problem of determining the

critical flutter velocity corresponding to the class of solutions

of equation (6) reduces to analysis of the manner in which the

problem's eigenvalues Z are ordered at the limit with respect to

the stability Oparabola of equation (18).

The above considerations permit the proposed flutter problem

to be studied. Thus, starting from the characteristic equation

obtained, namely, equation (14), taking equation (17) into account

in this equation and separating the real part from the imaginary

part, we get two equations expressed through ZR as well as through

Zp, equations that must be identically satisfied for the

determinant of equation (11) to be zero.

On the other hand, as was mentioned earlier, the conditions

for flutter to appear are obtained if and only if ZR and Zp are

the coordinates of a point located on the stability parabola.

Taking equation (18) into account in the above-mentioned equations,

we get the system of equation expressed solely through ZR, as /242

follows:

3#The concept of stability* parabola was introduced for the first
time in the study of the aeroelastic stability of panels by
Movcian [10], Krumhaar [12], ahd-S,tepanov [13] and used in the
same field by Houbolt [14], Grigoliyukaand Mikhailov [15],
Calligeros and Dugundji [15], Dowell [16], Ketter [6], 'nd
Vasiliyev [17]. In the wider context of the stability of non-
conservative systems in general, the-notion of s:tability
parabola was introduced and generalized by Leipholz [18, 19].

10



Re: (cos 2 A- sin2A) 2 -- {cos2 A2(Z2 - e-Z,,) -

- ZR( 9: - 2+02) + o 2+6 ) 
2 sin 2(Z Z) -

8- 64x20 _ -n D2 93 sin A cos A(<oai+co 2 +f 2+

32 4 x 20' (D 0  D 26  4

) 92 2 D u p

322(8 202 D ~2 D :L 2

3/ 927C4 0,+  .l + i51-

- ZA(,, +,2 + ~h, + A 2) +O)1,(co + C022] ± : 2

+ 6z - Z (Z-3 4zi) +( + o +) +

+ (Z~- Ez8) [(1,+ 4i) (2 +)2) ( )+21 + 222-

Im: ( (cos A+~ sia A) (4Z-o-02-012- )

322x 202 (D 16 2 6 Z) o 2+

(4X881 (4 x 80D De
9+4 - ----  (- 9 +( cos A sin A

ZIZ2W2, +T+ 2 [(+ &) W2 ) CO2 W2 , +o1

2+ 4Z -4 2 1 2 2 1

[,o,.,(o, +,) +6 4(1) 1 ) W2o)] 0.0

Any value of ZR that satisfies both parts of equation (19) /243
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the coefficients of the above equations, is zero. An approximate

method of obtaining the common roots of the two equations is the

graphic method, which consists in representing the two polynomials

in the plane of the parameters (ZR,X) and in choosing the point of

intersection corresponding to the most critical flutter case.

In the case of damping ST 0, the parameter Z that plays the

role of the eigenvalues is expressed through

Z= -( (20)

and the conditions that correspond to incipient flutter reduce to

ImZ % 0

In this case, instead of the system of equations (19), we get

Re: 3 (cos2 A- 2 sij2 A) 2+ (coS 2 A[ 2 Zj-Z.(m±+<W.+

W ±2 ) +)116)21 2]± 2 sin 2 A[2Z~-
Z+ 02,+ W2 + 02, (02l + + .2,2 2 2 + 2Z -

-z,(1Io +, 2 21 1) + 12 222 01] +W
(8?A 2 2x322X202 D16 D6 D32

-9244 -l D- 1 + C) (cos2 A__2 si A)
3) 92 A D

9 £ D6 6 l ? sin A cos A(co2 +W- 2

.2 + 1__ 324 X 20 4 D 6  2 6  
3 ) 4

1 2-4ZR) + 94 8 D+ D2

32 2 x 202 ID16  .D2 2
+ 26 3 Z2

ZR(W± + 2 2 o oW]

+ 2 + 12 + 1 1  1-

Im: _ (cos 2 A+ W2 sinl A) 2(4Z -- - ) -

322 x 202 Die D
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/2114

(8 9264 X 80 D D sin A cos A+

3 9 D2I, DI

4Z +2ZR[( + o ,) (W2 012) 2 W 1~1+ (0)2 -

! 2 2 +W22- 1 2Co 2- 3Z(O ) ~1+0 2 + 0)1+0)22)- [0,1W0)](c +.,2) +

+0)120)2(C+ +J)1)1 = 0,

a system that is characterized by the fact that equation (21)2

can be obtained in an exact manner from equation (21)1 by deriva-

tion with respect to ZR. This brings to light the fact that, in

the event that ET 4 0, the critical flutter parameters corres-

ponding to simultaneous solution of the two equations correspond ,

to the peak of the curve representing the variation of A as a

function of ZR or, what comes to the same thing, the point at

which the two branches of the natural frequency spectrum fuse.

Numerical Application, Conclusions

The effect of the variation in the arg&e of orientation of

the orthotropicity on the critical flutter values will be brought

to light for the case of a plane panel constructed symmetrically

from three orthotropic layers, it being assumed that theo(outer

layers have the thickness h1 = h3 = 6 and the middle layeri has

the thickness h2 = 46 (total thickness h = 46) [sic]. The outer

layers are considered to be constructed from a material with

orthotropy of type 1 and the middle layer, froma material with

orthotropy of type 2 (see Table 1).

TABLE I

]Type of G
orthotropy , 1 E,

Type 1 E 10E 0,0349 0,349 0,5
Irype 2 10E E 0,349 0,0349 0,5

13



As regards the angles of orientation of the orthotropicity

corresponding to the material of the three layers, it is con-

sidered tp be D(2) =() = ; 0(I)

The direction of flow of the gas is considered to be parallel

with the axis 051.

In the case of the example under consideration, we get the

variation of the flutter velocity X as a function of the angle of

rotthotropicity 0" for different values of the angle V' and dif-

ferent values of the parameters ¢, R11, 5 T'

The main conclusion to be drawn from the curves obtained is

,-that the maximum value of the critical flutter velocity does not

/arise in the general case when the principal axes of orthotropy

coincide withthe panel's geometrical axes (in this connection,

see Figs. 2-6). This fact reflects the potential capability of

these structures to bring about optimum conditions from the point

of view of flutter requirements.

The same curves bring to light an increase in the critical /250

flutter velocity that corresponds to the increase intithe ratio

= a/b; the same thing happens in the case of an increase in the

damping parameter sT. As regards the effect of R1 1 on the

critical flutter velocity, Figs. 2 and 4 and, respectively,

Figs. 2 and 3, show that while an increase in stretching loads

(R1 1 < 0) is favorable, the effect of an increase in compression

loads (R1 1 > 0) is unfavorable. Fig. 6 contains representations

of the frequency curves that bring to light the points corres-

ponding to the most critical flutter conditions, points, obtained

from the intersection of the curves resulting from representation

of equations (19) 1~ afnd(19) 2.

14
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